ANALYSIS OF PLANE POROUS EMITTERS WITH SURFACE COMBUSTION
AND A HEATED ARTICLE

G. T. Sergeev UDC 536.425:532.546

Computational dependences are obtained for porous emitters, taking account of
the influence of the velocity and heat of combustion of the injectant, the

thermqphysical properties, the porosity of the packing, and the degrees of
the interacting media. '

In connection with the extensive practical application of porous emitters with surface
combustion, it is expedient to give a method to analyze them, and all the more so since there
is very little published on this question [1-3]. All the fundamental parameters governing
the operation of a porous emitter, whose diagram is represented in Fig. 1, are taken into
account in the method presented in this paper.

The fuel injectant (liquid or gas) with initial temperature T, is filtered in the direc-
tion from the "cold" wall surface (y = y,) of thickness I = y, — y, to the "hot" (y = y2)
surface with a transverse flux density jg of the substance (see Fig. 1). Thin-walled articles
fabricated from metal, e.g., and moving at a definite velocity vs are located at a distance
Zg = y3 — y2 from the "hot" surface, are heated from the emitter and the gas layer to a
given temperature Tsf, and are heat insulated from each other.

To analyze the heat-transfer process with radiation between the diffusing parallel in-
finite surfaces taken into account, the differential equations characterizing the stationary
temperature distribution t = T/T, in the porous body and the injectant must be solved,
which have the following form in dimensionless variables (here and henceforth, the prime
denotes the derivative with respect to y = y/y2) [4]:

t”—gt'+Q=0v (1)
ti—Eds =0 (2)

with the following boundary conditions
y=—oo, tg=t,; (3)
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where G is a coefficient characterizing the completeness of combustion of injectant; Qs,'heat
of combustion; and vs, velocity of motion of the article being heated. The derivative t, in
conditions (5) and (6) is determined under the stationary conditions being considered by the
relationship _

‘ £y = (s )Ws— 1) &)

where o
t3m= Vt-'iffl . (8)

The emissivity €g of a gas layer of thickness Zg is defined by the equality
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gg=1—exp(—1y), (9)

where T, is the integrated optical thickness of the gas layer (Tg = xlg); » 1is the absorption co-
efficient. Values of the radiation heat fluxes q% and q% in the boundary conditions (5) and
(6) and taking account of the presence of the emitting and absorbing gas between the "hot"
and "cold" surfaces equal

L gy 1 Gay (10)
=T BT,
According to [5], here
1 4
LA bt k) - 7 ' ()

0.75t, +- &5 ' + &5 —1

where o = 5.67¢10~° W/m®edeg K*, and Tasp = tspTe.

We obtain the solution of the differential equations (1) and (2) under the boundary
conditions (3)-(5) by two quadratures

mFG) 4+ [h— ()] SPEY— B L, expE—emply o o (12)
expE —expky, exp& —exply,
to=te+(h—1t)exp E(1— )], — oo < 1< 4, (13)

where

Q () exp (— Ey)dy;
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F)=F(@m) k. (14)

For Q(¥) = const, Eq. (12) becomes

Q - -, Q —.] expty—exply E—expty
t=— @G—y)+ tz*—(l—y.)} PEY—expiys 4 expS—expby (15)
E 13 exp&—expluy, expE—exply,

Using the second boundary condition in (4), which characterizes the equality of the

heat fluxes for ¥ = ¥,, as well as the solutions of (12) and (13), we obtain the value of
the temperature t, on this boundary

ty= o[l —exp&(ys— )l + expE (s — 1) [£, — F (1)]. (16)

Eliminating the value of t, from (12)-(15), we obtain from (12) and (14), respectively
t=Fg) ~tll—exp &y — D + (@) [a— F ()], an

t=QE iy —y) +E — e E !+ 11—y +t Il —expEy— DI+ to), (18)

where

[ —expE@—1)
exp& (1 —y;) —exp&(ys—y)

@ y) =

Using the second condition in (5) and (6), which are the heat-balance equations on the
emitting and heated surfaces, we obtain the following additional algebraic equations from

which the value of t, and the velocity Vs of the article motion can be found which assures

its being heated to a given temperature tsf .

HE + [E 4 hge/ (o — Dt = E (. + 45 +] ewdy + Agstam/(ys— 1) +E65 ¢ 8, (19

b

Va(tsr— ) = A g 2(le—tsm)(ys— 1) + E(#5 — 8¢ 1D, (20)
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where
k oT?
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For Q(y) = Q = const, Eq. (19) is converted into an algebraic equation of the fourth
degree in t,:

BE 4[5 +hgn/gs — Dl 2 = § (e +5) + QUL — §) 4 dgten/(s — 1) + Etde £, (21)

The solution of problem (1)-(6) is the following. The value of t, is determined from
(20) or (21) for given parameters qg, Q, &, tg, tis tsf, €2, €3, Eg, Y1, §2, and 3. Then
the velocity V; is determined from (20). The temperature distribution over the thickness of
- the porous wall is determined from (17) or (18). Values of q, and gs can be obtained from
the dependences

go =1 () =8(tr—1t)—Q(1—yy,
gs = V3 (t3s— 4)- (22)

The results of a computation represented in Table 1 and-in Figs. 2 and 3 were obtained
for tj = tg = 1, y2 = 1, and the following values of the other parameters, one of which was
taken to be variable in order to analyze its influence on the process under consideration:

51=08; y;=0.08m; y2=0.10 m; ys3=0.i5m; fsf =2.638; g,=60; g;=0.1; £2=09; &=07; Q=0; ¢=1. (23)

(The coordinate axes for both V; and q., q% and q; coincide in Figs. 2 and 3.)

The influence of the coordinate §1 [or the wall thickness 7 = 1 — ¥, for the segment 1
divided into n parts (n = 10)] is shown in Fig. 2a for the parameters {23) but for Q = 1.
The maximum increase in t with the diminution in wall thickness is observed on its '"cold"
side for § = ¥,, which corresponds to n = 0. For § = 1 or n = 10 the dimensionless tempera-
ture t, is practically invariant since its value is determined mainly by the heat of com-
bustion of the injectant on the emitting surface. The order of the diminution of q%, qa, and
Vs with the growth ¥, is the same (see Fig. 2a). Values of q. increase here, which is due
to the corresponding increase in the gradient t' [(1)]. The dimensionless temperature t dimin-
ishes with the growth of the emissivities e, (see Fig. 2b) and €5 (Fig. 2c), whereas the radiation
fluxes q% and velocities V; increase. Since the change in the parameters mentioned occurs at
a constant temperature of the article being heated tsf, then under these conditions the
radiation equilibrium in the system builds up with the growth of €, and €; for a correspond-
ing diminution in the temperature t, and therefore t,, as well as for an increase in V; and
qs. The radiation flux q% defined by means of the relation (11) hence increases with the
growth of €, and €3 despite the diminution of t. and the temperature gradient t' [(1)]or q2,
since a change in t. is negligible. An increase in the value of t, with the growth of eg
(see Table 1) occurs because of intensification of the heat supply from the emitting gas
layer to the "hot" surface. A diminution in the flux q%, defined by means of (11), despite
the increase in t., is due to the appropriate influence of the value of €g+ The obvious
deduction that the velocity of its motion V; diminishes as the given temperature of the
article being heated taf rises, but the values of t increase, follows from-the data presented
in Table 1. As the power of the internal energy source Q increases the values of Vi, qs,
and qé‘also grow, while the temperature gradient in the porous wall and therefore, the flux
gq. also diminish (see Table 1).

Since combustion of the injectant occurs on the "hot" surface of the porous wall, then
as the blowing parameter § grows (see Fig. 3a), all the dimensionless fluxes and the velocity
Vs as well as the body temperature t increase. The dimensionless heat of combustion qg (Fig.
3b) exerts an analogous influence. The parameters q;, qs, and V3 vary most strongly for
small values of yi, i.e., for ys=C 1.5 (Fig. 3c). For ys > 1.5 the radiation flux q%, which
is exponentially dependent on Ty, Tg = % (Vs :,y2)’ varies negligibly. In order to maintain
this value of tsf = const with the growth of ys, the wall temperature t must be increased,
as indeed follows from Fig. 3c. Since the limits of variation of ys and t or t. are signifi-
cant as compared to the range of €gs then the fluxes Q. increase with the growth in the thick-
ness of the gas layer thickness Zg = y3 — y2. The values of q%, Vs, and qaywhich are functions
of the parameters Zg, £g, and tp according to (19)-(23), diminish here for ys > 1.5, which
is due to the influence of the mentioned parameters. Values of g determined by the relationship
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Fig. 1. Diagram, in principle,
of a porous emitter.
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Fig. 2. Distribution of the dimensionless temperature t (solid lines)

over the wall thickness y and also the dependences of the heat fluxes
Q25 q%, g5 and the velocity Vs (dashes) on the following parameters:

a) ony, =1— L, where I = 1/y, is the wall thickness divided into n

parts, n = 10 [1) y, = 0.2, 2) 0.3, 3) 0.4, 4) 0.5, 5) 0.6, 6) 0.7,
7) 0.8, 8) 0.9]; b) on €, [1) €, = 0.55, 2) 0.60, 3) 0.65, 4) 0.70,
5) 0.75, 6) 0.80, 7) 0.85, 8) 0.90, 9) 0.95, 10) 1.00]; c¢) on €5 [1)
es = 0.60, 2) 0.65, 3) 0.70, 4) 0.75, 5) 0.80, 6) 0.85, 7) 0.90, 8)

0.95, 9) 1.00].
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Fig. 3. Temperature t distribution over the wall thickness ¥ (solid
lines) and also the dependences of q-, qg, ds, and V3 on the following
dimensionless quantities: a) on the blowing parameter & [1) & = 0.1,
2) 0.2, 3) 0.3, 4) 0.4, 5) 0.5, 6) 0.6, 7) 0.7, 8) 0.8, 9) 0.9, 10)
1.0]; b) on the heat of combustion of the injectant qg [1) gqg = 65,
2) 60, 3) 55, 4) 50, 5) 40, 6) 30, 7) 20, 8) 10]; c) on the distance
vs [1) ys = 3.5, 2) 2.0, 3) 1.7, 4) 1.3, 5) 1.2, 6) 1.1].
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TABLE 1. Values of the Dimensionless Temperature t over the

Porous Wall Thickness y and of the Velocity V,; as Well as
the Heat Fluxes q., 42, qs, and q..

Parameter. 0%t 102t 1ozt | 1oz 1
32;1{1egd 102, 7=0.82 | 7=0,90 l;-‘=o.94LT=o,t98 10%¢, {7102V, | 10%, | 10%q, | 100,
3g=:0,005 329 333 353 363 | 374 | 379 2715 279 4449 | 441
0,05 330 335 354 365 | 375 | 381 2706; 281} 4433 | 4389
0,1 332 336 356 367 | 377 | 383 2695 283 4416 | 4371
0,2 335 340 . 360 370 381 387 2673, 2872 4378 | 4333
0,3 339 344 364 375 | 386 | 392 2648; 2917] 4337 | 4291
0,4 343 348 368 379 391 397 2620 2966, 4292 | 4245
0,5 247 352 373 384 396 1 402 2580 3020 4241 | 4193
0,7 358 364 387 i 397 i 409 | 416 2508! 3158] 4109 | 4058
tsf=:1,27 330 335 354 364 | 375 | 381 | 16244) 2809] 4435 | 4382
1,61 330 235 354 365 | 376 | 381 7213F 2813} 4431 | 4381
1,96 331 335 355 365 | 376 | 382 4632 2818| 4427 | 4378
2,30 331 336 355 366 | 377 | 382 3409] 2824| 4422 | 4375
2,64 332 336 356 367 | 377 | 383 2695 2831} 4416 § 4371
2,98 332 337 357 367 378 | 384 2227 2838 4409 | 4367
3,32 333 338 357 368 | 379 | 385 1896| 2847] 4401 | 4361
3,66 334 338 358 369 | 380 | 386 1650] 2856( 4393 | 4354
4,34 335 340 360 371 382 | 388 1308! 2876] 4375 | 4339
Q= —90 144 147 196 243 | 308 | 347 1786| 20470; 2926 | 2889
—60 208 211 250 286 | 332 | 360 2086] 14600] 3417 | 3377
—30 270 274 303 326 | 355 | 370 | 23891 8720{ 3914 | 3872

0 322 336 356 367 377 | 383 2695 2831} 4416 | 4371

15 362 367 382 386 | 388 { 388 |—2850 117] 4668 | 4623

30 393 398 408 406 399 | 393 |—3004! 3067| 4922 | 3004

gg = 1 —exp [— xya(ys— )]

grow as ?; increases, where €g equals 0.18, 0.33, 0.45, 0.75, 0.86, 0.99, respectively, for
¥, =1.1, 1.2, 1.3, 1.7, 2.0, 3.5. :

If it is necessary to compute the dimensionless blowing parameter £ with the heat of
combustion qg and composition of the combustion products taken into account, then the heat-
conduction coefficient of the gas layer between the emitter and the article being heated Ay
should be determined with the multicomponent mixture concentration taken into account, then
the value of Agy = Xg/kz is determined for given remaining parameters in (23) from (20) or
(21) in which the £ enters.

According to [3], for a ceramic perforated emitter with surface combustion, the tempera-
ture gradient AT = T, — T, for a 14 mm wall thickness varied between the limits 400-800°K
depending on the process parameters. If we take T; = 300°K, T, = 1200°K, then for some ma-
terials used most often to fabricate porous emitters, we have the following values’pf the
heat-conduction coefficient Ay (W/medeg [6]: For heat-resistant steel of the type EI417 we
have Ap = 14 for T, = 300°K and At = 17 for T, = 1200°K, while for a Dinas brick refractory
we have 0.91 and 1.14, respectively. Therefore, the difference in the values of Ay, used in
the formula Ay = MAg + (1 — M)ar &~ (L — M Arydoes not exceed 25% even for the maximum gradients
AT. In computing the temperature of a porous emitter wall by means of (17) or (18), the
assumption of constancy of the thermophysical properties specifies an error not greater than
10%, which can be diminished by an appropriate selection of the governing temperature [4].
The results presented and the values of the error are valid even in a computation of Ag.

It should be noted that all the physical hypotheses as well as the analytical dependences
for the porous wall with an injectant filtered through it are completely valid even for
perforated packings.

NOTATION

I, porosity; A, heat-conduction coefficient; cp, specific heat at constant pressure; Ay = (1 —
I Ap +Thgs ays specific power of the internal energy sources or sinks; p, mass density, T, temperature.
Subscripts: T, porous body skeleton; s, injectant; I, total (effective) quantities; i, in-
itial; m, geometric mean; f, finite; g, gas layer; 1, "eo0ld" wall surface; 2, "hot"; 3, heated
article; e, values as y » »=; ®, scalar quantdties.
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o

THEORY OF NONLINEAR HEAT AND MASS TRANSFER ON A
POROUS SEMIINFINITE PLATE

K. B. Pavlov, L. D. Pokrovskii,
and A. P. Shakhorin

The nonlinear transport process (thermal conductivity or diffusion) is comsidered
in a viscous liquid flowing near the plane of a semiinfinite plate. It is shown
that under certain conditions there is rigorous spatial localization of the thermal
or diffusive boundary layer.

Let the stationary flow of a Newtonian viscous liquid move over the plane of a semi-
infinite plane x =2 y, y=0, (Fig. 1) in the positive direction of the x axis. We assume that
the velocity distribution at the external boundary of the laminar boundary layer formed over
the plate is described by the expression U = c¢xM, where ¢ and m are constants=0 (one-param-
eter class of boundary-layer theory [1]). For the sake of generality, it is also assumed
that on the surface of the plate there is inhomogeneous fluid blowing or suction, proportion-
al to x(m-1)/2_ It is assumed that on the surface of the plate there is heat transfer or
isothermal diffusion of the plate material in the leading flow, and the corresponding trans-—
port coefficient yx depends on the transfer characteristic f(x, y) (temperature or concentra—
tion) according to the power law

—an (LN
X=an ; a, n, [, — const >0.

w

Here and below the subscript w denmotes the value of the corresponding quantity at the surface
of the plate.

In the boundary-layer theory approximation the nonlinear transport process under con-
sideration is described by the system of equations [2]

du du dau 0u - Ou v
u 4 v ={ -V ; ! = 0,
ox dy dx * oy? or Oy 1)
P TR/ 2 *r (2)
ox dy o ay?

Here u(x, y) and v(x, y) are the longitudinal and transverse components of the fluid velocity.

Assuming that there is no transferable characteristic in the leading flow ('vanishing

background"), the boundary conditions which the solution of system (1), (2) must satisfy are
written in the form
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