
ANALYSIS OF PLANE POROUS EMITTERS WITH SURFACE COMBUSTION 

AND A HEATED ARTICLE 

G. T. Sergeev UDC 536.425:532.546 

Computational dependences are obtained for porous emitters, taking account of 
the influence of the velocity and heat of combustion of the injectant, the 
thermophysieal properties, the porosity of the packing, and the degrees of 
the interacting media. 

In connection with the extensive practical application of porous emitters with surface 
combustion, it is expedient to give a method to analyze them, and all the more so since there 
is very little published on this question [1-3]. All the fundamental parameters governing 
the operation of a porous emitter, whose diagram is represented in Fig. i, are taken into 
account in the method presented in this paper. 

The fuel injectant (liquid or gas) with initial temperature T e is filtered in the direc- 
tion from the "cold" wall surface (y = Yl) of thickness I = y= - yl to the "hot" (y = y2) 
surface with a transverse flux density Js of the substance (see Fig. i). Thin-walled articles 
fabricated from metal, e,g., and moving at a definite velocity v3 are located at a distance 
Ig = y3 -- y= from the "hot" surface, are heated from the emitter and the gas layer to a 
given temperature Tsf, and are heat insulated from each other. 

To analyze the heat-transfer process with radiation between the diffusing parallel in- 
finite surfaces taken into account, the differential equations characterizing the stationary 
temperature distribution t = T/T= in the porous body and the injectant must be solved, 
which have the following form in dimensi_onless variables (here and henceforth, the prime 
denotes the derivative with respect to y = y/y=) [4]: 

t"--~t" + Q = o, 

with the following boundary conditions 

t ' , -  a.#; = o 

m 

y = . ~  oo, t s = t s ;  

,j= 1, 
e 

Y = Ya, t = ta, VaAta  = - -  ~ g z  t e  + q~. �9 

Here 

T| ~,~ 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Js. % s y ~  ; Vs = ( % p v ) •  . A t3  = t3f - -  t ,  
~':s ;L~Y~ "t ' " 

where G is a coefficient characterizing the completeness of combustion of injectant; Qs,,heat 
of combustion; and v3, velocity of motion of the article being heated The derivative t~ in 
conditions (5) and (6) is determined under the stationary conditions being considered by the 

relationship 
tg = (t3m--: t~ / (y~- -  ] ) ,  ( 7 )  

where 

6m= Vt-~- i " (8) 

The emissivity eg of a gas layer of thickness Ig is defined by the equality 
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eg = 1 - -  exp ( - -  ,g), (9)  

where ~g is the integrated optical thickness of the gas layer (~g = xlg); • is the absorption c o -  
e f f i c i e n t .  V a l u e s  o f  t h e  r a d i a t i o n  h e a t  f l u x e s  ,17" and q~ i n  t h e  b o u n d a r y  c o n d i t i o n s  (5)  and 
(6)  and t a k i n g  a c c o u n t  o f  t h e  p r e s e n c e  o f  t h e  e m i t t i n g  and a b s o r b i n g  gas  b e t w e e n  t h e  " h o t "  
and " c o l d "  s u r f a c e s  e q u a l  

Z q2Yz l qaYz (10)  q~= qa = 
LxT.  ' )~xT. " 

According to [5], here 

-z  ,, 
q~ = , = _ (11) 

- - i  0.75"cg + ~7 ~ + ~a - -  1 

where o = 5.67-i0 -s W/ma'deg K 4, and T3m = tamT~. 

We obtain the solution of the differential equations (i) and (2) under the boundary 

conditions (3)-(5) by two quadratures 

t = F ( ~  + [ t 2 - - F ( 1 ) ]  exp [ g - - e x p ~  + I ~  exp ~ - - e x p ~  , ~ ~.~.V~ 1, (12) 

exp [ -- exp [~i exp [ -- exp ~ ,  

where 

t s = t~ + (q - -  t~) exp [~ ( y - -  gob  - -  oo ~< -V ~ y-i, 

,7 F 

(~) = ~1 ' Q (y) dy ~ Q ~)  exp ( - -  ~ y)dy; F 
7, v-, 

(13)  

F(1) = F(y)1,7-=t. (14) 

For Q(y) = const, Eq. (12) becomes 

Q [ Q  xp g- xp L e x p ~ - - e x p [ 9  .(15) t =  
T ( y - y O +  [ t ~ - - T  J e x p ~ - - e - ~ p ~  + t ,  exp [ -- exp ~ Vi 

U s i n g  t h e  s e c o n d  b o u n d a r y  c o n d i t i o n  i n  ( 4 ) ,  w h i c h  c h a r a c t e r i z e s  t h e  e q u a l i t y  o f  t h e  
h e a t  f l u x e s  f o r  ff = ~ ,  a s  w e l l  as  t h e  s o l u t i o n s  o f  (12)  and ( 1 3 ) ,  we o b t a i n  t h e  v a l u e  o f  
t h e  t e m p e r a t u r e  t~ on t h i s  b o u n d a r y  

where 

t, ----- t~ [1 - -  exp ~ (-y, - -  I)] + exp ~ (if, - -  1) [t2 - -  F (1)l. (16) 

Eliminating the value of t~ from (12)-(15), we obtain from (12) and (14), respectively 

t = F ( y  0 --', t~[1 - - e x p  [ ( .q - -  1)1 q- q~(y-)[t2-- F (1)], (17)  

t = Q~-i [(~ _ 7/,) q- ~ - ' - -  q) {V)([-i + 1 - -9 , ) ]  + t~ [1 - -  exp ~ ~ - -  I)] + & q0 ~) ,  (18) 

,f@) = 
1 - -  exp [ (Vi - -  1) 

exp [ (1 - -  ~ )  - -  exp [ (g, - - 9 )  

Using the second condition in (5) and (6), which are the heat-balance equations on the 

emitting and heated surfaces, we obtain the following additional algebraic equations from 

which the value of t2 and the velocity V3 of the article motion can be found which assures 

its being heated to a given temperature t3f I 

., ~ 2 (19) t~E + [[ + Z-gXl(y~ - -  1)l t~ = ~ (t~ + qs) + _~ Q (Y) dg -+- ~g~t~rnl(~ - -  1) + Et?f  t i , 
Y~ 

taf ti), (20) V s ( t a f - - t  i) = ~g x(t2 - - t s m ) / ~ a - -  1) + E ( t ~ - -  2 2 
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where 

E = k (~T~y~_ - - ;  k =  
In ( 1 1 ~ 1 + - - - - 1 1  X~(1--I]) " 

For Q(~) = Q = c o n s t ,  Eq. (19) i s  conve r t ed  i n to  an a l g e b r a i c  e q u a t i o n  o f  the  f o u r t h  
degree in t2: 

t~E ' 2 (21)  -7 [~ + ~ / ~ 3  - -  I)] ta = ~ (l~ + qs) + Q (1 - -  ~)  + %ztm/(~ - -  1) + Et~f t i- 

The  s o l u t i o n  of  problem ( 1 ) - ( 6 )  i s  the  f o l l o w i n g .  The v a l u e  of  t2 i s  de termined from 
(20) or  (21) f o r  g iven  pa ramete r s  qs,  Q, ~, t e ,  t i ,  t 3 f ,  r ca,  r y~, y2,  and ya .  Then 
the  v e l o c i t y  V3 i s  de te rmined  from (20) .  The t empera tu re  d i s t r i b u t i o n  over  the  t h i c k n e s s  of  
the  porous  w a l l  i s  de te rmined  from (17) or  (18) .  Values of  q2 and qa can be o b t a i n e d  from 
the  dependences  

q2 = t' (1) = [ ( t2--  t~ ) - -O  (1 --y~), 

q~ = V3 ( t ~ - -  ~ ). (2~)  

The results of a computation represented in Table i and in Figs. 2 and 3 were obtained 
for t i = t e = i, y2 = i, and the following values of the other parameters, one of which was 
taken to be variable in order to analyze its influence on the process under consideration: 

9 , = 0 . 8 ; y l = 0 . 0 8 m ; y z = 0 . 1 0 m ; y 3 = 0 . i 5 m ;  t~i=2.638; q~=60; eg=0.1;e2=0-9; e3=0.7; Q = O ; ~ = I .  (23) 

(The c o o r d i n a t e  axes  f o r  bo th  V3 and q2, q~ and q3 c o i n c i d e  in  F ig s .  2 and 3 . )  

The influence of the coordinate y~ [or the wall thickness I = 1 -- ~ for the segment 
divided into n parts (n = i0)] is shown in Fig. 2a for the parameters (23) but for Q = i. 
The maximum increase in t with the diminution in wall thickness is observed on its "cold" 
side for ~ = yl, which corresponds to n = 0. For ~ = i or n = i0 the dimensionless tempera- 
ture t2 is practically invariant since its value is determined mainly by the heat of com- 
bustion of the injectant on the emitting surface. The order of the diminution of q~, qs, and 
Va with the growth ~i is the same (see Fig. 2a). Values of q2 increase here, which is due 
to the corresponding increase in the gradient t' [(i)]. The dimensionless temperature t dimin- 
ishes with the growth of the emissivities ~2 (see Fig. 2b) and es (Fig. 2c), whereas the radiation 
fluxes q~ and velocities V3 increase. Since the change in the parameters mentioned occurs at 
a constant temperature of the article being heated t~f, then under these conditions the 
radiation equilibrium in the system builds up with the growth of e2 and ~3 for a correspond- 
ing diminution in the temperature t, and therefore t2, as well as for an increase in V3 and 
q3. The radiation flux q~ defined by means of the relation (ii) hence increases with the 
growth of e2 and ea despite the diminution of t2 and the temperature gradient t' [(i)] or q2, 
since a change in t2 is negligible. An increase in the value of t2 with the growth of eg 
(see Table i) occurs because of intensification of the heat supply from the emitting gas 
layer to the "hot" surface. A diminution in the flux q~, defined by means of (II), despite 
the increase in t2 is due to the appropriate influence of the value of Sg. The obvious 
deduction that the velocity of its motion V3 diminishes as the given temperature of the 
article being heated tsf rises, but the values of t increase, follows from'the data presented 
in Table i. As the power of the internal energy source Q increases the values of V~, qs, 
and q~ also grow, while the temperature gradient in the porous wall and therefore, the flux 
q= also diminish (see Table i). 

Since combustion of the injectant occurs on the "hot" surface of the porous wall, then 
as the blowing parameter ~ grows (see Fig. 3a), all the dimensionless fluxes and the velocity 
V3 as well as the body temperature t increase. The dimensionless heat of combustion qs (Fig. 
3b) exerts an analogous influence. The parameters q~, q3, and V3 vary most strongly for 
small values of Y3, i.e., for y3~ 1.5 (Figl 3c). For Y3 > 1.5 the radiation flux q~, which 
is exponentially dependent on ~g, ~g = z(Y3 ] y2), varies negligibly. In order to maintain 
this Value of t3f = const with the growth "of y3, the wall temperature t must be increased, 
as indeed follows from Fig. 3c. Since the limits of variation of y3 and t or t2 are signifi- 
cant as compared to the range of eg, then the fluxes q2 increase with the growth in the thick- 
ness of the gas layer thickness Ig = y3 - y2. The values of q~, V3~and q3~which are functions 
of the parameters Ig, Eg, and t2 according to (19)-(23), diminish here for Y? > 1.5, which 
is due to the influence of the mentioned parameters. Values of eg determined by the relationship 
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Fig. 2. Distribution of the dimensionless temperature t (solid lines) 
over the wall thickness y and also the dependences of the heat fluxes 
q2, q~, q3 and the velocity V3 (dashes) on the following parameters: 
a) on Yl = i -- l, where I = I/y2 is the wall thickness divided into n 
parts, n = i0 [i) Yl = 0.2, 2) 0.3, 3) 0.4, 4) 0.5, 5) 0.6, 6) 0.7, 
7) 0.8, 8) 0.9]; b) on Ez [i) ~2 = 0.55, 2) 0.60, 3) 0.65, 4) 0.70, 
5) 0.75, 6) 0.80, 7) 0.85, 8) 0.90, 9) 0.95, i0) 1.00]; c) on ~3 [i) 
s3 = 0.60, 2) 0.65, 3) 0.70, 4) 0.75, 5) 0.80, 6) 0.85, 7) 0.90, 8) 
0.95, 9) 1.00]. 

o,2 o,~ q8 o,8 ,.,o eo 30 ~,o ~-o ~ ,m 2,o ;5 3,o J3 

s ssI ~ ~  

~..... , ..~__~ 3,0 7 / ~ol / i " ' . - -  ~ . . ~  3z 

g s i  / ze 

2,~ /o Io\ 

,8 qg ~ , o,a qg g 0,8 '9 g 

Fig. 3. Temperature t distribution over the wall thickness ~ (solid 
lines) and also the dependencesof q2, q~, qs, andVs on the following 
dimensionless quantities: a)on the blowing parameter ~ [I) ~ = 0.i, 
2) 0.2, 3) 0.3, 4) 0.4, 5) 0.5, 6) 0.6, 7) 0.7, 8) 0.8, 9) 0.9, i0) 
1.0]; b) on the heat of combustion of the injectant qs [I) qs = 65, 
2) 60, 3) 55, 4) 50, 5) 40, 6) 30, 7) 20, 8) i0]; c) on the distance 
y3 [i)Ys = 3.5, 2) 2.0, 3) 1.7, 4) 1.3, 5) 1.2, 6) i.i]. 
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TABLE i. V~lues of the Dimensionless Temperature t over the 
Porous Wall Thickness y and of the Velocity V~ as Well as 
the Heat Fluxes q~, q2, qs, and q~. 

"Parameter 
being 
varied 

~g=O, 005 
0,05 
0,1 
0,2 
0,3 
0,4 
0,5 
0,7 

t3f==1,27 
1,6i 
1,96 
2,30 
2,64 
2,98 
3,32 
3,66 
4,34 

~= --90 
--60 
--30 
0 
15 
30 

10=tt 

329 
330 
332 
335 
339 
343 
~47 
o58 
330 
330 
331 
331 
332 
332 
333 
334 
335 
144 
208 
270 
322 
362 
393 

lO-~t 
F=o.s_o 

lO=t 
~-=o,9o 102t lO=t lO=t= iTIO=V~I ] ]~=0,941y=0,98 10=q= 

363 374 379 I 27151 2791 
365 375 381 I 27061 281] 
367 377 I 383 l  2695] 28~ 
370 381 , 387 I 2673 2872t 
375 386 i 392 I 26481 2917] 
379 391 397 ] 26201 2~6 I 
3~ 396 i 402 I 2589[ ~20l 
397 409 ] 416 2508 315~ 
364 375 I1381 162~ 280~ 

365 376 } ~2 ~ 4632 281~ 
366 377 ~ 382 ] 3409 282~ 

367 378 ] 3~ ] 2227 283~ 
~8 379 I 385 ~ 1896 284~ 
369 380 386 ] 1650 285~ 
371 382 ~8 [ 1508 287~ 
243 308 347 t 1786 204701 
~6 332 ~0 ~86 14~0l 
326 335 370 2389 87~[ 
3~  377 383 2695 2831~ 

358 ~8 --2850 117l 
406 399 393 --3004 ~671 

333 
335 
336 
340 
344 
348 
352 
364 
335 
335 
335 
336 
336 
337 
338 
338 
340 
147 
211 
274 
336 
367 
398 

353 
354 
356 
350 
364 
368 
373 
387 
354 
354 
355 
355 
356 
357 
357 
358 
360 
196 
250 

382 
408 

10=q~ 

4449 
4433 
4416 
4378 
~337. 
4292 
4241 
4109 
4435 
4431 
4427 
4422 
4416 
4409 
4401 
4393 
4375 
2926 
3417 
3914 
4416 
4668 
4922 

10=q'~ 

441 
4389 
4371 
4333 
4291 
4245 
4193 
4058 
4382 
4381 
4378 
4375 
4371 
4367 
4.~ 
4354 
4339 
2889 
3377 
3872 
4371 
4623 
3004 

% = 1 - -  exp [ - -  ~Y2 ( ~ - -  1)], 

grow as ~3 increases, where eg equals 0.18, 0.33, 0.45, 0.75, 0.86, 0.99, respectively, for 
y~ X i.i, 1.2, 1.3, 1.7, 2.0, 3.5. 

If it is necessary to compute the dimensionless blowing parameter ~ with the heat of 
combustion qs and composition of thecombustion products taken into account, then the heat- 
conduction coefficient of the gas layer between the emitter and the article being heated %g 
should be determined with the multicomponent mixture concentration taken into account, then 
the value of %gZ = ~g/%E is determined for given remaining parameters in (23) from (20) or 

(21) in which the ~ enters. 

According to [3], for a ceramic perforated emitter with surface combustion, the tempera- 
ture gradient AT = T2 -- TI for a 14 mm wall thickness varied between the limits 400-800~ 
depending on the process parameters. If we take Tz = 300~ T2 = 1200~ then for some ma- 
terials used most often to fabricate porous emitters, we have the following values of the 
heat-conduction coefficient %T (W/m.deg [6]: For heat-resistant steel of the type ~1417 we 
have %T = 14 for T~ = 300~ and %T = 17 for T2 = 1200~ while for a Dinas brick refractory 
we have 0.91 and 1.14, respectively. Therefore, the difference in the values of X T, used in 
the formula ~E = K~s + (i -- ~)%T ~ (i -- H)lT~does not exceed 25% even for the maximum gradients 
AT. In computing the temperature of a porous emitter wall by means of (17) or (18), the 
assumption of constancy of the thermophysical properties specifies an error not greater than 
10%, which can be diminished by an appropriate selection of the governing temperature [4]. 
The results presented and the values of the error are valid even in a computation of %g. 

It should be noted that all the physical hypotheses as well as the analytical dependences 
for the porous wall with an injectant filtered through it are completely valid even for 

perforated packings. 

NOTATION 

K, porosity; %, heat-conduction coefficient; Cp, specific heat at constant pressure; ~E = (i -- 
~)%T + H%s; qv, specific power of the internal energy sources or sinks; p, mass density, T, temperature. 
Subscripts: T, porous body skeleton; s, injectant; E, total (effective) quantities; i, in- 
itial; m, geometric mean; f, finite; g, gas layer; i, "cold" wall surface; 2, "hot"; 3, heated 
article; ~, values as y § ~; ~, scalar quantities. 
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THEORY OF NONLINEAR HEAT AND MASS TRANSFER ON A 

POROUS SEMIINFINITE PLATE 

K. B. Pavlov, L. D. Pokrovskii, 
and A. P. Shakhorin 

The nonlinear transport process (thermal conductivity or diffusion) is considered 
in a viscous liquid flowing near the plane of a semiinfinite plate. It is shown 
that under certain conditions there is rigorous spatial localization of the thermal 
or diffusive boundary layer. 

Let the stationary flow of a Newtonian viscous liquid move over the plane of a semi- 
infinite plane x~ y, y=O, (Fig. i) in the positive direction of the x axis. We assume that 
the velocity distribution at the external boundary of the laminar boundary layer formed over 
the plate is described by the expression U = cx m, where c and m are constants~0 (one-param- 
eter class of boundary-layer theory [I]). For the sake of generality, it is also assumed 
that on the surface of the plate there is inhomogeneous fluid blowing or suction, proportion- 
al to x(m-1)/2 It is assumed that on the surface of the plate there is heat transfer or 
isothermal diffusion of the plate material in the leading flow, and the corresponding trans- 
port coefficient • depends on the transfer characteristic f(x, y) (temperature or concentra- 
tion) according to the power law 

x = a n  \ ~ /  ; a, n, f ~ - - c o n s t > O .  

Here and below the subscript w denotes the value of the corresponding quantity at the surface 
of the plate. 

In the boundary-layer theory approximation the nonlinear transport process under con- 
sideration is described by the system of equations [2] 

Ou Ou dU a~u Ou Ov 
u - - + v  - U  q-v --; + - - -  = O, (1 )  

Ox ag dx Og 2 ax og 

of of a Ozf 
u - q- v (2) 

Ox Oy f'.$-~ Oy 2 

Here u(x, y) and v(x, y) are the longitudinal and transverse components of the fluid velocity. 

Assuming that there is no transferable characteristic in the leading flow ("vanishing 
background"), the boundary conditions which the solution of system (i), (2) must satisfy are 
written in the form 
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